Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 7481, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470858

RESUMO

Ternary quantum information processing in superconducting devices poses a promising alternative to its more popular binary counterpart through larger, more connected computational spaces and proposed advantages in quantum simulation and error correction. Although generally operated as qubits, transmons have readily addressable higher levels, making them natural candidates for operation as quantum three-level systems (qutrits). Recent works in transmon devices have realized high fidelity single qutrit operation. Nonetheless, effectively engineering a high-fidelity two-qutrit entanglement remains a central challenge for realizing qutrit processing in a transmon device. In this work, we apply the differential AC Stark shift to implement a flexible, microwave-activated, and dynamic cross-Kerr entanglement between two fixed-frequency transmon qutrits, expanding on work performed for the ZZ interaction with transmon qubits. We then use this interaction to engineer efficient, high-fidelity qutrit CZ† and CZ gates, with estimated process fidelities of 97.3(1)% and 95.2(3)% respectively, a significant step forward for operating qutrits on a multi-transmon device.

3.
Phys Rev Lett ; 127(20): 200502, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860047

RESUMO

Generating high-fidelity, tunable entanglement between qubits is crucial for realizing gate-based quantum computation. In superconducting circuits, tunable interactions are often implemented using flux-tunable qubits or coupling elements, adding control complexity and noise sources. Here, we realize a tunable ZZ interaction between two transmon qubits with fixed frequencies and fixed coupling, induced by driving both transmons off resonantly. We show tunable coupling over 1 order of magnitude larger than the static coupling, and change the sign of the interaction, enabling cancellation of the idle coupling. Further, this interaction is amenable to large quantum processors: the drive frequency can be flexibly chosen to avoid spurious transitions, and because both transmons are driven, it is resilient to microwave cross talk. We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of 99.43(1)% as measured by cycle benchmarking, and we find the fidelity is limited by incoherent errors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...